Strongly Hyperbolic Systems in General Relativity *

نویسنده

  • Oscar A. Reula
چکیده

We discuss several topics related to the notion of strong hyperbolicity which are of interest in general relativity. After introducing the concept and showing its relevance we provide some covariant definitions of strong hyperbolicity. We then prove that is a system is strongly hyperbolic with respect to a given hypersurface, then it is also strongly hyperbolic with respect to any near by one. We then study for how much these hypersurfaces can be deformed and discuss then causality, namely what is the maximal propagation speed in any given direction. In contrast with the symmetric hyperbolic case, for which the proof of causality is geometrical and direct, relaying in energy estimates, the proof for general strongly hyperbolic systems is indirect for it is based in Holmgren’s theorem. To show that the concept is needed in the area of general relativity we discuss two results for which the theory of symmetric hyperbolic systems shows to be insufficient. The first deals with the hyperbolicity analysis of systems which are second order in space derivatives, they include certain versions of the ADM and the BSSN families of equations. This analysis is considerably simplified by introducing pseudo-differential first order evolution equations. Well posedness for some members of the latter family systems is established by showing they satisfy the strong hyperbolicity property. Furthermore it is shown that many other systems of such families are only weakly hyperbolic, implying they should not be used for numerical modeling. The second result deals with systems having constraints. The question posed is which hyperbolicity properties, if any, are inherited from the original evolution system by the subsidiary system satisfied by the constraint quantities. The answer is that, subject to some condition on the constraints, if the evolution system is strongly hyperbolic then the subsidiary system is also strongly hyperbolic and the causality properties of both are identical. Work supported by CONICOR, CONICET and Se.CyT, UNC Member of CONICET.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Strongly hyperbolic Hamiltonian systems in numerical relativity: Formulation and symplectic integration

We consider two strongly hyperbolic Hamiltonian formulations of general relativity and their numerical integration with a free and a partially constrained symplectic integrator. In those formulations we use hyperbolic drivers for the shift and in one case also for the densitized lapse. A system where the densitized lapse is an external field allows to enforce the momentum constraints in a holon...

متن کامل

ar X iv : 0 80 3 . 03 34 v 2 [ gr - q c ] 1 0 Ju l 2 00 8 Strongly Hyperbolic Extensions of the ADM Hamiltonian

The ADM Hamiltonian formulation of general relativity with prescribed lapse and shift is a weakly hyperbolic system of partial differential equations. In general weakly hyperbolic systems are not mathematically well posed. For well posedness, the theory should be reformulated so that the complete system, evolution equations plus gauge conditions, is (at least) strongly hyperbolic. Traditionally...

متن کامل

60 v 1 1 6 Ju n 20 00 Blow - up for solutions of hyperbolic PDE and spacetime singularities

An important question in mathematical relativity theory is that of the nature of spacetime singularities. The equations of general relativity, the Einstein equations, are essentially hyperbolic in nature and the study of spacetime singularities is naturally related to blow-up phenomena for nonlinear hyperbolic systems. These connections are explained and recent progress in applying the theory o...

متن کامل

ar X iv : g r - qc / 0 10 60 85 v 1 2 6 Ju n 20 01 Some Mathematical And Numerical Questions Connected With First And Second Order Time Dependent Systems Of Partial Differential Equations

There is a tendency to write the equations of general relativity as a first order symmetric system of time dependent partial differential equations. However, for numerical reasons, it might be advantageous to use a second order formulation like one obtained from the ADM equations. Unfortunately, the type of the ADM equations is not well understood and therefore we shall discuss, in the next sec...

متن کامل

ar X iv : g r - qc / 0 10 60 85 v 2 7 J ul 2 00 1 Some Mathematical And Numerical Questions Connected With First And Second Order Time Dependent Systems Of Partial Differential Equations

There is a tendency to write the equations of general relativity as a first order symmetric system of time dependent partial differential equations. However, for numerical reasons, it might be advantageous to use a second order formulation like one obtained from the ADM equations. Unfortunately, the type of the ADM equations is not well understood and therefore we shall discuss, in the next sec...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004